(CO)

4 Years Bachelor of Science B.Sc. (Hons.) in Chemistry under CBCS

Course Outcomes (Major Courses)

S.No	UG Semester	Course	Course Outcomes
1.	I	MJC-1 Inorganic Chemistry: Atomic Structure, Chemical Bonding and fundamentals of organic Chemistry	CO1- The model of an atom including the related various principles CO 2- The principles of bonding as well as shapes and structure of covalent molecules. CO 3- Initial step research in Organic Chemistry viz-Detection, Separation and Purification of Organic Compounds.
2.	II	MJC-2 Physical Chemistry: States of matter and Ionic Equilibrium	CO 1- The mathematical expressions for different Properties of gas, liquid and solid and understand their physical significance. CO2- The Crystal structure, and may calculate related properties of different crystal systems. CO3- The concept of ionization of electrolytes with emphasis on weak acid and base and hydrolysis of salt. CO4- The concepts of pH, PK _a , PK _b PK _w , Buffer Solutions, Solubility Product etc, and their applications in day to day life.
3.	III	MJC-3 Organic Chemistry: Cyclic Hydrocarbons and their Halogen Derivatives	CO1: The aromatic character of the molecules. CO2: - The idea to design some organic synthesis.
4	III	MJC-4 Physical Chemistry: Chemical Thermodynamics and its Applications	COI: Various thermodynamic terms. CO2: Various enthalpies of transformations and Kirchoff's law CO3: Entropy changes, Gibbs free energy change, partial molar quantities. spontaneous and non- spontaneous processes. CO4: Second and third law of thermodynamics.
5.	IV	MJC-5 Inorganic Chemistry: s-, p-, d- and f-block elements	CO1: Different oxidation states of elements with their relative stability and complex forming properties. CO2: The ring, cage and polymers of B. Si & P. CO3: To carry out the preparation of inorganic compounds. CO4: The important properties of transition metals such as their oxidation states, colour, magnetic and spectral, use of Latimer diagrams in identifying oxidizing, reducing and disproportionating species. CO5: The concepts related with noble gases, their compounds, shapes, properties and applications.

	1	1	
6	IV	MJC-6 Organic	CO1: Preparation, properties and reactions of compounds with
		Chemistry:	oxygen.
		Compounds with	CO2: Containing functional groups. to draw plausible mechanisms
		Oxygen Containing	for reactions involving these functional.
		Functional Groups	CO3: The knowledge of various named organic reactions associated
			with these functional groups.
			CO4: Chemistry of epoxides.
			CO5: The detection of O-containing functional groups like alcohols,
			phenols, carbonyl and carboxylic acid groups.
			CO6: The preparation of various organic compounds by functional
			group transformations and other common organic reactions.
			CO7: The green practices in Organic syntheses.
7.	IV	MJC-7 Physical	CO1: The degree of ionization, pH and salt hydrolysis
		Chemistry: Phase	CO2: The different types of Buffer solutions.
		Equilibria,	CO3: The concepts of solubility product
		Conductance and	CO4: The conductivity, specific conductivity, equivalent
		Electrochemical	conductivity and molar conductivity, application of conductance
		Cells	measurement in determining various physical parameters
			CO5: The standard electrode potential of half cells and calculate the
			EMF of a cell using Nernst equation.
			CO6: EMF measurements in determining various parameters like
			free energy. Enthalpy, entropy, equilibrium constants, etc.
			CO7: The concentration cells with and without transference.
			CO8: The principle of potentiometric titrations.
8.	V	MJC-8 Co-ordination	CO1: Ligand, denticity of ligands, chelates, coordination number
		Chemistry	and nomenclature coordination of compounds
			CO2: Isomerism in coordination compounds.
			CO3: Valence Bond Theory to predict the structure and magnetic
			behavior of metal complexes
			CO4: Pairing energy, CFSE and its effects, high spin and low spin
			complexes.
			CO5: Magnetic properties and colour of complexes on the basis of
			Crystal Field Theory.
			CO6: Properties of transition metal complexes, variable oxidation
			states, colours, magnetic and catalytic properties.
9.	V	MJC-9 Polynuclear	CO1: The chemistry of polynuclear hydrocarbons
		hydrocarbons,	CO2: The named reactions related to amines nitriles, isonitriles and
		nitrogen containing	diazo compounds.
		compounds,	CO3: The chemistry of some common heterocyclic compounds.
		heterocyclic	

		compounds,	CO4: The general methods involved in structural elucidation of
		alkaloids and	alkaloids and terpenoids.
		terpenoids	
10.	VI	MJC-10 Colligative	CO1: Colligative properties of dilute solutions and determination of
		Properties of Dilute	these properties.
		Solutions, Chemical	CO2: Abnormal colligative properties and molar mass.
		Kinetics and	CO3: Azeotropes, maximum and minimum boiling azeotropic
		Photochemistry	mixture.
			CO4: Kinetics of simple and complex reactions.
			CO5: Jablonski diagram and laws of photochemistry.
11.	VI	MJC-11 Organic	CO1: Genetic materials involved in living biosystems.
		Chemistry:	CO2: Physicochemical properties of amino acids, peptides and
		Biomolecules	proteins.
			CO3: Enzymes and their activity as well as some basic idea about
			lipids.
			CO4: Basics of energetics in biosystems and introduction to some
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		synthetic and naturally occurring pharmaceuticals.
12.	VI	MJC-12 Physical	CO1: The postulates of quantum mechanics, Schrödinger's wave
		Chemistry:	equation and its applications
		Quantum	CO2: The concepts related to electronic and rotational spectra.
		Chemistry	CO3: The concepts related to vibrational and Raman spectra.
13.	VII	&Spectroscopy MJC-13 Inorganic	CO1: Nomenclature and classification of Organometallic
13.	VII	Chemistry:	_
		Organometallic	compounds. CO2: Properties of metal carbonyls including their structures.
		Chemistry,	CO3: Methods of preparation of Organometallics.
		Symmetry and	CO4: Concept of symmetry and group theory.
		Group theory	con. concept of symmetry and group theory.
14.	VII	MJC-14 Research	
		Methodology	
15.	VII	MJC-15 Organic	CO1: Different types of electronic transitions in organic molecules.
		Chemistry:	CO2 : The principles related to ultraviolet spectroscopy.
		Spectroscopy	CO3: Different types of vibrations in organic molecules and the
			principles related to infrared spectroscopy
			CO4: The nuclear spin, shielding and deshielding effects and the
			principles of NMR
			CO5: The principles of ESR spectroscopy
16.	VIII	MJC-16 Analytical	COI: Understand accuracy and precision.
		Methods in	CO2: Develop methods of analysis for different samples
		Chemistry	independently

	CO3: Test contaminated water samples CO4: Understand basic principle of instrument like Flame Photometer, UV-vis spectrophotometer CO5: Learn separation of analytes by chromatography	
	COS: Learn separation of analytes by chromatography	